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Abstract-Plane and round buoyant jets in a quiescent ambient have three distinctive regions; an initial 
variable-density, non-buoyant region, a transition region and a final plume region. Decay laws in the first 
and third regions can be derived from dimensional similarity considerations. However, the decay relations 
in the transition region are usually determined empirically. This paper presents an approach whereby decay 
laws valid for all three regions are derived for plane and round buoyant jets. The analysis is carried out by 
assuming self-preservation of the mean field in each of the regions and Gaussian error distributions for 
the mean properties. With this formulation, the eddy diffusivities for momentum and temperature (or mass 
fraction) are determined by solving the turbulent mean flow equations subject to appropriate boundary 
conditions and are found to vary along and across the jet. An auxiliary equation is derived by requiring 
the eddy viscosity to correctly approach its corresponding limiting value for an incompressible free plane 
or round jet. The auxiliary equation thus derived is physically related to jet entrainment. Growth rate and 
decay laws are deduced and they correctly predict their dependence on the jet density ratio in the first 
region and the densimetric Froude number in the third region. Calculations of decays of centerline 
properties in these two regions correlate well with plane and round jet measurements. On the other hand, 
decays of centerline properties in the transition region are dependent on both the jet density ratio and the 

densimetric Froude number and are in good agreement with plane and round jet data. 

INTRODUCTION 

TURBULENT jets in a quiescent ambient can be classi- 
fied according to the relative importance of two par- 
ameters. One is the initial momentum flux, M, and 
the other is the initial specific buoyancy flux, B. The 
jet is a steady plume when M is small compared to B, 
while it is a pure jet when B is negligible compared to 
M. It is a buoyant jet when the two parameters are of 
comparable importance. However, even in a vertical 
turbulent buoyant jet, different flow regimes can be 
identified downstream of the jet exit depending on the 
relative influence of M and B (Fig. 1). In general, 
three distinct regions exist [l]. An initial variable- 
density, non-buoyant region, where B is not impor- 
tant, occurs near the jet exit. The flow in this region 
is essentially the same as that found in a variable- 
density, non-buoyant jet and can be similarly 
analysed. This is followed by a transition region, 
where A4 and B play equally important roles in deter- 
mining the characteristics of the jet. The third region 
of a buoyant jet is a plume. In this region, the flow is 
far from the source ; therefore, the effects of M are 
negligible and B becomes the only important 
parameter. Consequently, the plume region can be 
analysed by methods used to study steady plumes. 
This means that the flow in the first and third regions 
can be analysed by dimensional similarity con- 
siderations. However, in the transition region, such 
an analysis is not presently available; thus, growth 
rate and decay laws are not well defined and cal- 
culations of these properties have to rely on empirical 
correlations. 

Since the flow in the first region only depends on 
M and the jet density ratio, 0, , it can be analysed in 
a manner similar to that of variable-density, non- 
buoyant jets. Besides the assumptions that the flow is 
fully-developed and remains axisymmetric or planar 
throughout the region of interest, the analysis usually 
invokes the assumption that the eddy viscosity is con- 
stant across the jet and that the turbulent Prandtl 
or Schmidt number is constant [Z, 31. Under these 
assumptions, Gaussian dist~butions are obtained for 
the mean velocity and mean scalar; however, the 
linear jet growth rate and hyperbolic centerline decay 
of velocity and scalar can be recovered correctly only 
when the centerline eddy viscosity is considered 
constant [3]. Since then, a more general analysis has 
been presented [4]. The analysis postulates separate 
Gaussian error distributions for the mean velocity 
and mean scalar and relaxes the constant turbulent 
Prandtl or Schmidt number assumption. Distri- 
butions for the eddy momentum and eddy scalar diffus- 
ivities can then be obtained by solving the turbulent 
mean flow equations. Physically realistic boundary 
conditions, such as finiteness at the jet centerline and 
at the jet edge and the correct approach to their incom- 
pressible values, are specified [5]. The analysis gives 
rise to rather general expressions for the diffusivities 
and they are functions of both the streamwise and 
radial (or normal) coordinates. Thus derived, the eddy 
viscosity can be used to deduce an auxiliary equation 
which is solved together with the integral equations to 
yield linear jet growth rate and hyperbolic centerline 
decays for the mean properties. The results are in very 
good agreement with measurements, including those 
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NOMENCLATURE 

;: 
constant, c+c, V mean radial velocity 
constant, a+ c X axial coordinate measured from jet exit 

3 initial specific buoyancy flux, X dimensionless x coordinate, rrjz). 

.&?(PY. --P,)/P,. 
B, constant defined for incompressible plane Greek symbols 

jets, &/4c %(I eddy thermal conductivity 

8, constant defined for incompressible round fi coefficient of thermal expansion for water 
jets, 4c2D/Re,6, i’o centerline buoyancy flux per unit volume, 

c constant defined in equation (9a) 9(P.X --PO) 
cl constant defined in equation (9b) 7'0 nomalizedp,, yOMpa --& 

D jet nozzle diameter 6, jet velocity half-width defined in Fig. 1 

A,> A,, ,437 A4 coefficients introduced in 6, jet temperature half-width defined in 
equation (16) Fig 1 

E entrainment function 4 jet velocity half-width evaluated at jet 
F entrainment coefficient exit 
Frj densimetric Froude number, S,, dimensionless a,,, S,,/S, 

[~,ui/&‘(p, -P,)I I,” 11 dimensionless r coordinate, r/s,, 

FrL local Froude number, 0 mean excess temperature, T- T,_ 

koU;/gD(p, -~o)l”* 0, centerline excess temperature 

9 gravitational constant Oj centerline excess temperature evaluated at 
H diffusivity function defined in equation jet exit 

(l5b) 8, normalized centerline excess temperature, 
H, diffusivity function defined in equation @,/TX 

(22b) B fluctuating temperature 
i index used to denote non-buoyant (i = 0) p, turbulent viscosity 

and buoyant (i = 1) jets P mean density 

L characteristic lengthscale, M 3y4/B1!2 PO centerline mean density deficit, pX --PO 
m specific momentum flux, fj,, U22sr dr PJ jet fluid density 
M initial specific momentum flux, QUj p_* fluid density of external stream 

Pr, turbulent Prandtl number plo centerline mean density, pI -_P,, 

4 volume flux, J,C, U2nr dr PO normalized centerline mean density deficit, 

e initial volume flux, nD2Uj/4 PO/(&L-Pj) 
Y radial (or normal) coordinate measured Cl jet density ratio, p,/p,. 

from symmetry axis 
Re, turbulent Reynolds number, Subscripts 

I&n I(&(O)~~,tO)/i+(O, v)) * W@, rM*)l j jet exit condition 
T mean temperature 0 jet centerline condition 

TX. temperature of the external stream r reference condition 
u fluctuating axial velocity Co external stream condition. 
u mean axial velocity 
u 

u: 

jet velocity Superscripts 
velocity at the jet centerline differentiation with respect to x 

00 normalized jet centerline velocity, U,/L’j .i index used to denote plane (j = 0) and 
c fluctuating radial velocity round (j = 1) jet. 

obtained from heated jets and binary gas jets of helium 
and carbon dioxide [4]. 

The approach taken to solve the plume problem is 
slightly different from that used to tackle variable- 
density, non-buoyant jets. Besides the usual jet flow 
assumptions, the analysis also invokes the Boussinesq 
approximation, i.e. the variation of density through- 
out the flow field is small compared to the density 
level. Under this additional assumption, the flow is 
influenced by B alone and is independent of CT,. In the 

past, researchers avoid the difficulties of turbulence 
modeling and attempt to solve the plume problem 
through the use of integral methods [6-121. Based on 
experimental evidence [ 131, Gaussian distributions are 
assumed for the mean velocity and mean scalar. 
Therefore, the governing equations can be integrated 
across the jet cross-section to yield ordinary differ- 
ential equations for the centerline properties. An 
auxiliary equation is required to close the set and this 
is usually obtained from entrainment consideration 
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FIG. 1. The three different regions of a buoyant jet. 

modeled after the proposal of Morton et al. 161. This 
involves postulating the ambient fluid entrainment 
rate and essentially trades the empiricism of tur- 
bulence modeling to that of modeling jet entrainment 
and, therefore, jet spread. Presumably, jet entrain- 
ment is not only a function of M but also depends on 
E and CT,. In other words, different entrainment rate 
equations have to be proposed for plumes with differ- 
ent densimetric Froude numbers, Frj and cl [ 141. 

These different approaches yield fairly good results 
when they are applied to treat variable-density, non- 
buoyant jets and plumes separately. However, they 
are not appropriate for analysing the entire region 
of a buoyant jet. Some attempts have been made to 
remedy this shortcoming [6, 15, $61. Since the integral 
relations obtained from the governing equations are 
valid for all three regions of the buoyant jet, dimen- 
sional similarity analysis can be applied to treat the 
entire region if a suitable entrainment rate or fourth 
equation can be found. Such proposals have been put 
forward by Morton et al. [6], Fox [IS] and Davis et 

al. [16] for plane and round jets. However, all three 
proposals involve different empirical constants even 
though they are formulated for buoyant jets with the 
same parameters. Furthermore, they cannot be easily 
generahzed to jets with different initial conditions. 
For example, all three proposals for entrainment rate 

assume that 6, is not jmpo~ant. According to the 
analysis of variable-density, non-buoyant jets by So 
and Liu [4], this assumption is not quite valid. Their 
results show that heavier-fluid jets spread faster and 
decay slower than lighter-fluid jets and the difference 
is substantial. For example, it is found that a carbon 
dioxide jet spreads faster by 42% and its centerline 
velocity decays slower by 29% at a normalized down- 
stream location of X = 10(Gj/D)(Re,/4c2) compared 
to a helium jet with the same jet exit velocity. In view 
of this, any entrainment rate equation that ignores the 
effect of ET, is limited and cannot be easily generalized 
to treat buoyant jets with different Frj and aI. 

Of course, this difhculty can be avoided by taking 
a completely different approach to tackle the buoyant 
jet problem. This involves solving the governing equa- 
tions by finite-difference techniques and assuming 
appropriate turbulence models for the turbulent 
momentum and scalar fluxes [ 17, 181. Closure of the 
turbulence equations can be achieved by different 
levels of modeling. The commonly used model 
requires the solution of two extra equations that 
govern the transport of the turbulent kinetic energy 
and its dissipation rate. In addition, gradient trans- 
port and constant turbulent Prandtl or Schmidt num- 
ber assumptions are invoked so that the turbulent 
momentum and scalar fluxes can be related to a com- 
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mon eddy viscosity and their respective mean velocity 
and mean scalar gradient. The eddy viscosity is deter- 
mined from the turbulent kinetic energy and its dis- 
sipation rate. In the process of modeling the turbulent 
fluxes, no less than five model constants are introduced 
and their values are determined from experiments on 
incompressible free jets, flat-plate boundary layers 
and homogeneous decaying turbulence. Unfortu- 
nately. no single set of constants is equally applicable 

to both plane and round jets. If the jet spread of 
both types of jets is to be calculated correctly. some 
constants have to take on different values for round 
jets [ 17, t 81. The difficulty is related to jet entrainment 
and it seems that presently there is no satisfactory way 
to resolve this issue for turbulent plane and round 
buoyant jets; the explanation of Pope [19] for incom- 

pressible plane and round jets not withstanding. Basi- 
cally, as pointed out by Pope [19], the difference lies 
in vortex stretching which affects entrainment, but is 
absent in plane jets. Recently, Cho and Chung 1201 
derived an intermittency equation taking into account 
the elTcct of entrainment and incorporated it into the 
k-c turbulence model. Their model calculations of 
two-dimensional and axisymmctr~c free shear flows 
showed marked improvements over conventional 
models. Consequently, their results lend support to 
the argument that it is important to account for en- 
trainment effects properly in the calculations of free 
shear layers, be it incompressible or buoyant flows. 

The present objective is to make an attempt to 
resolve the issue of entrainment rate for vertical tur- 
bulent buoyant jets. Instead of trying to propose an 
entrainment function valid for both types of jets, the 
present study attempts to derive separate entrainment 
functions for the plane and round jet, respectively. An 
integral approach is used to accomplish this objective. 
Separate Gaussian error distributions are assumed for 
the mean velocity and mean scalar and the con- 
servation equations are integrated to give a general 
distribution for the eddy viscosity. The eddy viscosity 
is required to satisfy certain physical boundary con- 

ditions at the centerline and at the edge of the jet. If 
the eddy viscosity is further required to approach its 
incompressible plane and round jet value correctly, a 
separate auxiliary equation, similar to an entrainment 
rate equation, is obtained for plane and round jets, 
respectively. This equation and the integral con- 
servation equations can be solved to yield growth rate 
and decay laws for the entire region of the plane and 
round buoyant jet. 

THE GOVERNING EQUATIONS 

Plane and round vertical turbulent buoyant jets in 
a quiescent ambient are considered (Fig. 1). The flow 
is assumed to be steady and fully-developed in the 
mean field at a relatively short distance downstream 
of the jet exit. The assumption of mean field self- 
preservation does not imply self-preservation of the 
turbulence field. Indeed. as later analysis shows, the 

turbulent momentum and heat fluxes do vary along 
the jet. Their variations are fully described by the 
derived turbulent diffusivities which are functions of 
both the stream coordinate and a dimensionless radial 
(or normal) coordinate. Evidence in support of mean 
field self-preservation can be gleaned from the recent 

binary gas jet measurements of So et al. [21]. Accord- 

ing to ref. [21], fully-developed characteristics of the 
mean velocity and density are evident as early as 9D 
downstream ofthejet exit. Therefore, similarity analy- 
sis of the mean field can be applied to all three regions 

of the buoyant jet. Furthermore, the flow Reynolds 
number is considered to be very large so that molec- 
ular diffusion is negligible and all fluid properties 
except density are taken to be constant. Under these 

assumptions, the mean flow equations for the tem- 
perature and mass fraction are identical. Therefore, 
solutions of binary gas buoyant jets are identical to 
heated buoyant jets. In view of this, only heated jets 
are considered below. Once the solution to the tcm- 
perature held is obtained, the corresponding solution 
to the mass fraction scalar also is available. Invoking 
thin shear layer approximations, the governing eyua- 

tions for the turbulent buoyant jet can be written as : 

(1) 

(3) 

pT= px,T,. (4) 

In writing down (3) and (4), the pressure is assumed 
constant everywhere consistent with the thin shear 
layer approximations. The index i is used to denote 
the presence of buoyancy effects ; therefore, i = 0 rep- 
resents variable-density, non-buoyant jets while i = I 
denotes buoyant jets. Boundary conditions for (l)- 
(4) can be stated as : 

rl(x, 0~) = 0(x, ZJ) = 0, c)(x, co) = p*, (5a) 

U(X,O) = U,(x), Y(s, 0) = 0. 0 = O,(X) 

p(.r,O) = P1 -P”(x) = Do(x), (Sb) 

where the centerline values are to be determined. 
If the symmetry conditions at the jet centerline and 

vanishing turbulent fluxes in the ambient are used to 
simplify the integrals of (l)-(3), the following results 
are obtained : 

pb’r’dr = -(pVr’)* = E, (6) 

s 

71 

(pa*. -p)r’ dr, (7) 
0 
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d 

-s 

a 
pU@r’ dr = - 2 

s 

CC 

dx o 
p Ur’ dr. (8) 

0 

These equations can be reduced into ordinary differ- 
ential equations if the mean velocity and mean density 
distributions are expressed in terms of a radial (or 
normal) coordinate made dimensionless by an appro- 
priately defined jet width 6,,(x). The four unknowns 
in the problem are 6,‘ and the centerline properties UO, 
pn and 0,. Only three equations are available and 
these are (4). (7) and (8). Even though (6) is an 
entrainment equation, it is not an appropriate fourth 
equation because E is not known. Since (4), (7) and 
(8) are uniformly valid for the entire jet region, the 
solutions obtained are equally applicable to the three 
regions of the buoyant jet if and only if the fourth 
equation to be derived is equally valid for the three 
regions. 

THE MEAN FLOW 

The approach used by So and co-workers [4, 5, 
22, 231 to derive the fourth equation is to assume 
distributions for U and p and then use the mean flow 
equations to solve for the behavior of the momentum 
and heat fluxes across the jet. If the assumption of 
gradient transport is invoked, the behavior of theeddy 
momentum and heat diffusivities can be determined 
from the corresponding turbulent flux behavior. Phys- 
ically realizable boundary conditions are imposed on 
the eddy diffusivities and they are then used to deduce 
equations that describe jet entrainment and the vari- 
ation of eddy momentum to heat diffusivity. When 
this approach is used to treat incompressible heated 
free jets [S], general expressions for pit and a, are 
obtained. So and Hwang [5] show that the only dis- 
tributions for mean velocity and temperature that will 
lead to physically realistic expressions for !ft and CL, 
are Gaussian error functions. Extensions of this 
approach to treat isothermal binary gas jets [4], 
incompressible heated jets in a co-flowing stream [22] 
and variable-density, non-buoyant jets in a uniform 
stream [23] also have been carried out. Again, the 
physically valid distributions for mean velocity and 
temperature (or mass fraction) are Gaussian error 
functions. In all these cases, the approach leads to an 
auxiliary equation that gives rise to a general entrain- 
ment function. The predicted growth rate and decay 
laws are in good agreement with measurements. 

If the same approach is used to treat buoyant jets, 
physically realistic distributions have to be assumed 
for the mean velocity and temperature (or mass frac- 
tion). The measurements of Rouse et al. [ 131 indicate 
that these functions can be suitably correlated by 
Gaussian distributions. Subsequent experiments on 
plane [24-261 and round jets [21, 27-321 lend further 
credence to the findings of Rouse et al. [13]. For ex- 
ample, when the Gaussian distribution exp [ - G(r/x)*] 
is used to correlate an appropriately defined dimen- 
sionless mean velocity, the exponent G is found to 

vary for different jets. On the other hand, if the Gaus- 
sian error distribution exp [ -c(r/&)‘] is used to cor- 
relate all velocity data, c remains constant for all jets 
[25]. This is true provided that 6, is taken to be the jet 
half-width which is defined as the radial (or normal) 
location where the mean velocity is equal to half its 
value at the jet centerline (Fig. 1). With this definition 
for 6,. c is determined to be In 2. Similar distributions 
can be found for the mean temperature and mass 
fraction. If 6, is again used to normalized r for these 
distributions, the exponent c, is found to remain con- 
stant ; however, its value cannot be determined ana- 
lytically. Once U and p are known, the distributions 
of V and 0 can be determined from (1) and (4). The 
turbulent fluxes can be obtained by integrating (2) and 
(3). However, these functions are not fully determined 
because they depend on jet growth and the decays of 
centerline properties. Therefore, a complete solution 
is available if and only if the growth rate and the 
decays of centerline properties also are determined. 

In view of the above arguments, Gaussian error 
functions given by 

U = U,(X) exp [ -c$], f9a) 

px -P = ~~(4 ev t-~~$1~ @I 

PO = LP,(x) exp f--c,f?l, (9c) 

are assumed for the mean flow field in the present 
approach to analyse plane and round buoyant jets. It 
can be easily shown that (SC) is a direct consequence 
of (9b) and (4). The exponent c is, by definition, equal 
to In 2 ; however, c, is not known and its value has 
to be determined from experimental measurements. 
Based on the study of So and Liu [4], c, is found to 
range in value from 0.34 to 0.56 for e, that varies 
from 0.14 to 1.52. Therefore, a ten fold increase in Q, 
only results in a 50% increase in c,. According to 
the definitions of S, and 6,, c,jc is equal to (6,,/&)2. 
Therefore, c, also can be determined from the relative 
spread rate of the velocity and temperature layer, The 
normalized radial (or normal) coordinate is taken to 
be q = r/J,,. With these substitutions and the further 
assumption that the ambient temperature is constant, 
(4) evaluated at the centerline and (Q-(8) can be 
written as 

s 
=’ pl, [v,s;+ ‘1’ exp I-c$]@dq = .!C, (IO) 

0 

s iL 

p,[u;al;+ ‘1’ exp [-2c$]~’ dq 
0 

-[poU&5!+‘]’ 
s 
a exp [-bq2]$dr) 

0 

= ip,gS”,+ ’ 
s 

x 
ev [-CIv21v’dv, (11) 

0 

[pOU&+‘] = 0, (12) 

PC&l = TX& -PO). 03) 
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These equations can be solved to give 6,,. U,,. /J(, 
and O,, if E is known. Alternatively, an auxiliary 
equation can be used to determine jet growth and 
centerline property decays. In the following, a method 
is described whereby an auxiliary equation is derived 
from (I) and (2) with the help of (9a) and (9b) and 

physically realistic boundary conditions for the tur- 
bulent momentum and heat fluxes. The auxiliary 

equation thus derived can be shown to be related to 
jet entrainment. Therefore, an entrainment coefficient 
can be determined and compared to empirical entrain- 
ment coefficients proposed by other researchers 16. 15, 
161. For the sake of clarity, the auxiliary equations 

for the round and plane jets are derived separately in 
the next two sections. Once this is accomplished, the 
corresponding entrainment functions are deduced. 
Thus derived, the entrainment functions are uni- 
formly valid for the entire region of the jet. 

AN AUXILIARY EQUATION FOR ROUND JETS A4= 

For round jets, ,j = 1 and the integrals of the various 
cxponentials can be made exact and evaluated ana- 
lytically. Therefore, with the help of (I), (9a) and (9b). 
(2) can be evaluated to give where the coefficients A,, A,, A 3 and A4 are functions 

of x and their behavior will be known once the vari- 
ations of the centerline properties are defined. At the 
jet centerline, the mean velocity gradient vanishes. In 
order for pie to vanish there, /-(t has to be finite. The 
condition for this to be true is given by: 
A , + A z + AR + A 4 = 0. Since the integrals from left to 
right in (11) can be evaluated and their values are 
(1/4c), (1/2h) and (1/2c,), respectively, the value of 
(A , + A 2 + A 3 + A a) can be determined with the help 
of (11) and (I 2) and is identically zero. Consequently, 
the physical requirements that {L, is finite and pilzi 
vanishes at the jet centerline are satisfied. 

-p”6,,uou;, I exp t-W) 
~~ ~ - 

2htl 
(14) 

It can be seen that PE goes to zero as q increases 
indefinitely. On the other hand, the behavior of p;uii 
at the jet centerline depends on the behavior of the 
centerline properties. In order to analyse this 
behavior, gradient transport is assumed for pm and 
the eddy viscosity pt is defined in terms of a function 
H(u. rl) so that 

The rationale for defining kit by (ISb) is to insure that 
it will take on the limiting incompressible free jet value 
correctly as p approaches p=. According to So and 
Hwang [5], (H/v2) is only a function of q for incom- 
pressible free jets. Therefore, for buoyant jets, the 

gencrat form for (H/q’) should be functions of both 
.Y and q. Substitution of (15) into (14) results in the 
following expression for H: 

H=A,+Azexp(-tq’) 

+A, exp {-(c , -c.)rf2j,+A4 exp (-a~‘), (16) 

(1%) 

(17c) 

-h~ouou;, 3 (174 
1 

The next step is to impose the condition that ,44$ has 
to approach its value for incompressible free jet cor- 
rectly. This way, the free jet is a special solution of the 
more general solution presented here. For the case 
of an incompressible free jet, i = 0, p. = 0, if, = p., 

and (S,; U,$’ = 0. Therefore, A3 = A, = 0 and 
A, = -A2 = (Re,/4c’)&,. According to So and 
Hwang [5], there is no loss of generality if A, is chosen 
to be 1. This means that all arbitrary constants in the 
formulation are accounted for by Re,. With this choice 
for A, and A z, (H/q’) is only dependent on q, Thus 
defined. the limiting value of (ff/q') as q goes to zero 
is c. If the argument is made that p, approaches its 
incompressible value correctly, then the behavior of 
(H/q?) at the jet centerline should be the same for all 
jets and the limiting value of (H/v’) as q goes to 
zero also should be c. This condition gives rise to 
-A+- A,(<, -c) -aA, = c. The auxiliary equation 
derived from this condition is given by 
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Equation (18) can be interpreted as an equation for 
the jet spread. The effects of buoyancy and the vari- 
ations of centerline properties on jet growth are clearly 
indicated. Furthermore, (18) reduces exactly to the 
expression given above for an incompressible free jet. 

An expression for the entrainment function E can 
now be derived. Since the integral in (10) is equal to 
(1/2c), (IO)-(12) and (18) can be used to determine 
E. Omitting all the tedious algebra, the result is 

, 
E = cd;;;cL = 2&& u. 

--g$)+&)($&J 
In writing down this expression, the perimeter 

(19) 

of the 
jet is taken to be 26,. According to Morton et al. [6], 
E can also be written as E = (26,)‘p,U,F for both 
plane and round jets, where F is the entrainment 
coefficient. Therefore, F can be deduced from (19) 
and the result is 

Several empirical expressions also have been proposed 
for F. These can be written in the common form : 

F=0.057+$, 
L 

(21) 

where u2 is a constant and differs in value from one 
proposal to the next, n = 1 is specified by Morton ef 
al. [6] and Fox 1151 and n = 0.3 is chosen by Davis et 
af. [ 161. The present entrainment coefficient not only 
shows dependence on Fr,, but also on the decays of 
centerline properties. Therefore, it is more realistic 
and its derivation is not as ad hoc as that of (21). 

An expression for the eddy thermal conductivity 
can be similarly derived. This is obtained by inte- 
grating (3) with the help of (9). If gradient transport 
is again assumed for the turbulent heat flux and, con- 
sistent with (15b), a similar functional relation is 
invoked for ur, then pz.$ and IX, can be represented by 

u, = [~](~)~~. (22a,b) 

The present form suggested for tl, is necessary because 
the physical boundary conditions, such as vanishing 
turbulent heat flux at the jet centerline and in the 
ambient fluid, the finiteness of CI, at the jet center and 
the correct approach of the turbulent Prandtl number, 
Pr,, at the centerline to its incompressible heated jet 
value, have to be satisfied. With the turbulent heat 
flux thus defined, substitution of (9) and (22) into (3) 

gives rise to the following expression for HI, 

H = Re,p,t#Ud’ 1 -exp t-w*) __-.-. 
2c I PO44 uo i 1 2c (23) 

It can be easily shown that H, and hence pa and TV, 
satisfy the physical conditions specified above and 
that Pr, is deduced to be Pr, = (p%,H/pH,). In the 
limit of r~ goes to zero, Pr, approaches cl]c ; a value 
identical to that obtained for incompressible heated 
free jets [5, 191. Since c,/c = (S,/S,)‘, Pr, also can be 
interpreted as a measure of the relative spread of the 
velocity layer to that of the thermal layer. The present 
approach determines the variation of the spread ratio 
rather than assuming it to be constant. 

AN AUXILIARY EQUATION FOR PLANE JETS 

Once the methodology is established, it is fairly 
simple to derive the corresponding equations for a 
plane jet (i = 0). One exception to note is that, when 
(l)-(3) are integrated with the help of (9), the integrals 
appearing in the equations will no longer give rise to 
exponential functions as in the case of the round jet. 
Instead, they will appear as error functions. Conse- 
quently, fairly cumbersome expressions are obtained 
for the integrated form of (l)-(3) and ,ut and LX, cannot 
be easily cast into forms similar to (15b) and (22b) 
with relatively simple expressions for H and H, The 
integral in (10) is evaluated to give 4(7c/4c), while 
those in (11) from left to right are : ,/(x/~c), ,/(7r/46) 
and ,/(K/~c,), respectively. In the following, ex- 
pressions for p* and rl are presented and an auxili- 
ary equation is derived by requiring pI to approach 
its incompressible plane jet value in the limit of pl goes 
to zero and i = 0. Omitting all algebra and, noting 
that for plane jets, (12) reduces to (&,p,U,) = 0, the 
dimensionless b”r is given by 

In the limit of q goes to zero and i = 0, (24) can be 
shown to reduce to &/4c which is the value for an 
incompressible jet. Since the growth rate of an incom- 
pressible plane jet is linear, &/4c is a constant. Denot- 
ing this constant by B,, an auxiliary equation can be 
obtained by requiring that, in the limit of q goes to 
zero, (24) approaches B, . The result is 
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An entrainment function can now be derived from 
(IO), (11) and (25). From (IO), Eisdetermined to be 

E = PK UoF= ~7 (Sub’,) (26) 

while (1 I) can be re-arranged to yield 

- b* [Pr -PO/(;)] 

Combining (25))(27), the entrainment coefficient for 
plane jets can be written as 

X (28) 

Again, it can be seen that F depends on Fr, and the 
variations of centerline properties. It is quite different 
from (20) and (21). This means that a single proposal, 
such as (21), for both plane and round jets would not 
be appropriate. Furthermore, (28) is not based on ad 
hoc assumptions for jet entrainment. Therefore, it 
would be more realistic compared to (2 1). 

An expression for a, can be similarly derived. With- 
out going into details, the result is 

at 
&,P”U”(P/P I ) 

= %[I-exp (-c,qZ)] 
I 

(63 & 
xexp]-(~-c,)~21+ 4c U 

I I, ( > P”” 

n exp (c.,n’) 
X 

81 c ‘I 
.-- erf(rlJc), (29) 

where the reference quantities chosen to make x, 
dimensionless are the same as those adopted in the 
round jet case. It can be shown that (29) satisfies the 
requirements that the heat flux vanishes at the jet 
centerline as well as at infinity. Furthermore, Pr, 

evaluated in the limit of ‘1 goes to zero for the case of 
an incompressible plane jet is again given by 
Pr, = L’, /c. Therefore, just as in the case of round jets, 
the classical results for incompressible plane jets are 
recovered correctly. 

JET GROWTH AND DECAYS OF CENTERLINE 

PROPERTIES 

The four equations that govern jet growth and 
centerline decays are given by (1 I)-( 13) and (18) for 
round jets and (1 I)-( 13) and (27) for plane jets. In 
terms of normalized variables, the four non-dimen- 
sional equations for round jets become 

(30) 

(33) 

As for plane jets, the four non-dimensional equations 

are given by (30), (31) with ,j = 0 and the following 
two equations that are deduced from (12) and (27). 
These are 

- - 
u -(I -~I)~“l(&,~“)@o+ ;+,I 

I 

+2cB,[l -(I -o,)&]fl; = 0. (35) 

Thus normalized, the equations are parametric in e, 
and Fr, and there are two free constants in each set of 
equations. The constants are c,, B, and B2. Since c 
has already been determined by So and Liu [4], only 
B, and B2 need to be evaluated. These constants are 
related to the spread of incompressible plane and 
round jets, therefore, they can be determined from 
these limiting flow cases. 

When variable-density, non-buoyant jets are con- 
sidered, i = 0 and the resultant equations are para- 
metric in I-J, only. These equations are identical to 
those derived by So and Liu [4]. They found that the 
jet growth rate is linear and the centerline decays of 
mean velocity and density are hyperbolic. Therefore, 
in the first region of a buoyant jet, the jet growth and 
centerline decays are known. In the transition region, 
both (T, and Fr, are of equal importance. Therefore, 
the complete equations given above have to be solved. 
Further downstream, in the plume region, it can be 
easily determined from dimensional similarity con- 
siderations that iI?” would decay like X ’ ’ and p,, 
would behave like X ’ ’ for round jets and that 0,) 
would be constant and p,, would go like X ’ for plane 
jets. It can be shown that this asymptotic behavior is 
given by the solutions of the above equations with 
i = 1 and 0, = 1. Thus, the jet characteristics are para- 
metric only in Fr,, In view of this, the strategy for 
solving the buoyant jet problem is to start the cal- 
culation using the variable-density, non-buoyant jet 
equations. The initial conditions for these equations 
are 6, = 1, C?” = 1, PO = 1 and 0, = (I-0,)/a, 
specified at the jet exit. The calculation is continued 
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until the asymptotic behavior is obtained. This solu- 
tion is used to determine the virtual origin of the 
buoyant jet and the various quantities thus deter- 
mined are used as initial conditions for the solution 
of the buoyant jet equations. Their solutions give the 
growth rate and centerline decays for both the tran- 
sition and plume regions, because far enough down- 
stream, the solutions of (30)-(35) would approach 
asymptotically the plume behavior. 

RESULTS AND DISCUSSION 

Parametric calculations are carried out to show the 
dependence of the decays of centerline properties on 
0, and Fr,. Since the equations for plane and round 
jets are first order, non-linear ordinary differential 
equations, they can be solved by a number of standard 
numerical techniques. A standard Runge-Kutta algo- 
rithm is used in the present study. The calculations 
are performed by first solving the variable-density, 
non-buoyant jet equations using the jet exit conditions 
as initial conditions. Since the growth rate is linear 
and the decay laws are hyperbolic for these non-buoy- 
ant jets, the parametric calculations can be carried out 
by choosing the constants B, and 3, to be 1, hence 
the products of Do and X and PO and X follow to be 
I. In view of this choice of constants, the growth rates 
of the plane and round jets are not shown. Only the 
centerline decays of o,, and PO are presented. The 
centerline decay of 8, follows directly from (30), and, 
hence, is also not shown. With the solution of the 
initial region known, the buoyant jet equations are 
solved using the non-buoyant jet solution as initial 
conditions. In addition to specifying o,, Frj also has 
to be given. Since the start of the transition region 
depends on Frj, a trial and error technique has to be 
used to determine this location. Once this is deter- 
mined, the solution of the equations is carried out 
until the asymptotic plume behavior is reached. Com- 
bining these solutions will yield a composite solution 
to the governing equations. 

Only sample results for plane and round jets are 
shown. In the case of round jets, the results to be 
presented are for 0, = 0.4 and three different values 
of Frj ranging from 3.162 to 316.2. This is equivalent 
to specifying Fr; from 10 to 105. On the other hand, 
the results to be presented for plane jets are for 
Frj = 22.36 and three different values of a, ranging 
from 0. I to 0.95. This way, the effects of (r , and Frj 

on centerline decays in the transition region can be 
clearly illustrated. The results for the round jet are 
given in the set of Figs. 2-5, while those for the plane 
jet are shown in the set of Figs. 6-9. In the first two 
figures of each set, the decay curves in the variable- 
density, non-buoyant region and the transition region 
are shown in the form of 0, vs Xand f0 vs X. It should 
be pointed out that presenting the density behavior in 
the form of a normalized buoyancy flux is consistent 
with the practices of other researchers [1] ; however, 
the non-dimensional buoyancy flux as defined is ident- 

10 

1 

f-Jo 
0.1 

0.01 

0.001 

0.01 0.1 I 10 100 1000 104 16 
x 

FIG. 2. Decay of 8, for three different values of Fr, for a 
round jet. 

FIG. 3. Decay of y,, for three different values of Fr, for a 
round jet. 

‘Ooo E 

0.01 0.1 I IO 100 

Fr; ’ 0; ‘H x 

FIG. 4. A plot of FrjCri “4~,, vs Fr; ‘u; ““X for three different 
values of Fr, for a round jet. 

0.001 t b ~‘~~*(~’ 1 “ML*,’ 1 u,,,a1 c ,I, 

0.01 0.1 1 IO 100 

Fr;‘o;“‘X 

FIG. 5. A plot of F~,cT~~~~ vs Fr- ‘CF; “‘A for three different 
values of FF, for a round jet. 
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FIG. 6. Decay of C?, for three different values of O, for a 
plane jet. 
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FIG. 7. Decay of 7,) for three different values of (T, for a plane 
jet. 

0 01 01 1 10 100 

Fr,-‘” IT, ‘/J x 

FIG. 8. A plot of Fr,’ ‘gl’o,, vs Fr,- 4’1~;’ ‘X for three 
different values of 0, for a plane jet. 
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FIG. 9. A plot of Fr~“~i’pO vs Fr,-4’3~; ’ ‘Xfor three differ- 
ent values of 0, for a plane jet. 

ical to Pn. The last two figures in each set show the 
decays in the transition and plume regions and the 
variables are normalized by both (r, and Fr, in the 
manner suggested by Chen and Rodi [I]. Thcrcfnrc. 
Fr,rr, ““ii,, is plotted vs FY, ‘a, ’ ‘X and Fr,rr; ‘7” is 
plotted vs Fr,- ‘cr, “.A’ in Figs. 4 and 5. respectively. 
On the other hand, Fr; ‘cJ~,’ 0, is plotted vs 

Fr,- ’ lo, ’ ‘A’ in Fig. 8 and Fr,? ‘CT: ‘;Tg is plotted vs 
Fr,~’ ‘CT “‘Xin Fig. 9. 

The effect of Fr, on centerline decays in the tran- 
sition region of a round jet is clearly illustrated in 
Figs. 2-5. Note that as Fr, increases, the length of 
the initial region for ii,, decreases (Fig. 2) while the 
corresponding length for ;‘” increases (Fig, 3). 

Initially, the decay of C?” is slower for lower values of 
Fy, while the opposite is true for 1/,,. However. further 
downstream, the decay curves for all Fr, calculated 
are essentially parallel for i?(, and 7”. This means that 
the decay rates become the same for all Fr, calculated. 
The final plume region is clearly shown in Figs. 4 and 
5. Plotted in these dimensionless variables, the decay 

behavior is essentially independent of Fr, in the plume 
region, just as the experimental data suggest [I]. 
Finally, it should be pointed out that the length of 
the transition region is very much affected by Fr,. It 
decreases as Fr, increases, 

The effect of 0, on centerline decays in the tran- 
sition region of a plane jet is presented in Figs. 6-9. 
It can be seen that the decay rate for fl,, increases 
(Fig. 6) while that for 7,) decreases (Fig. 7) as g, 
decreases. Just as in the round jet case, the decay 
curves become parallel further downstream. However, 
the separation between different curves is not as large 
as in the case of varying Fr, while keeping o, constant. 
The length of the initial region also depends on (r , It 
increases as g, decreases (Fig. 7). Plotting the results 
in terms of the dimensionless variables suggested by 
Chen and Rodi [I] again show that decay in the plume 
region is essentially independent of Fr, (Figs. 8 and 
9). Furthermore. the length of the transition region 
is also affected by 0,. Together, these two sets of 

results demonstrate that if r~, and FY, do not differ 
significantly from one experiment to another, the vari- 
ations noted in the measured decays may not be very 
large. Consequently, they could be incorrectly attri- 
buted as scatter in the measurements [ 11. 

Comparisons with experimental measurements can 
now be carried out. In all these calculations. the con- 

stants B, and Bz are determined by matching the level 
of iZ?,, decay with data in the initial region. As for c,. 
it is obtained from the values quoted in ref. [4]. Since 
most of the measurements to be compared give a 0, 
not too different from 1, c, = 0.533 is quoted by So 
and Liu [4]. This value is equivalent to specifying a 
Pr, = 0.74 for incompressible heated jets. The plane 
jet calculations are compared with data collected by 
Harris [24] and Kotsovinos and List [25], while the 
round jet calculations are validated against the 
measurements of Ogino et al. [30], Papanicolaou and 
List [31] and Peterson and Bayazitoglu [32]. Most 
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experiments did not report measurements covering all 

three regions. The exception is the recent and very 
careful round jet measurements of Papanicolaou and 

List [31] ; therefore, this set of data can be used to 
truly assess the correctness of the present analysis. All 
calculations are carried out by specifying the exact 
values of 0, and Fr, used in the experiments and in 
the manner described above. The final values of the 
constants c,, B, and Bz used in the calculations are : 
c, = 0.533 and B, = 0.04 for plane jets; c, = 0.533 
and B, = 0.18 for round jets. As for the values of cr , 
and Fr,, they are listed in the respective plots shown 
in Figs. 1 &I 5. After the results are obtained, they are 
prepared in the appropriate forms for comparison 
with measurements. 

With the exception of the experiments by Peterson 
and Bayazitoglu [32], which were conducted in air, 
the other experiments were carried out in water. Since 
the equation of state for water is different from that 

for a perfect gas, there is a need to demonstrate the 
validity of the present approach when the fluid is 
water. In a limited temperature range and to the 
lowest order, the equation of state for water can be 
written as 

1 _ (1 -WV) + l& 
P PI- Pr 

(36) 

where fi is taken to be constant in the temperature 
range considered. This equation is identical in form 
to the equation of state for the mixing of binary gases, 
which is given by [4, 231 

1 1 1 1 ._=__ -_- @ 
P Px ( > ’ PY. P, 

(37) 

where 0 in this case is the mixture mass fraction 
and p is the mixture density. The present approach is 
equally valid when used to analyse mixing of binary 
gas jets [4,23] and the same set of equations (31)-(35) 
with Fr, = 0 would result. In the binary gas jet case, 
(30) would be replaced by (37) evaluated at the center- 
line. Therefore, the present approach can also be used 
to calculate the experiments of refs. [24, 25, 30, 311. 
The equation set (31)-(35) is still applicable and the 
only equation that is different is (30) which has to be 
replaced by specializing (36) at the centerline. Since 
the present comparison is carried out with u,, and jjo 

only. there is no need to solve (30) or (36). In other 
words, the solutions of (31)-(35) are equally appli- 
cable to buoyant jets in water. 

The plane jet comparisons of centerline decays of 
a0 and To are shown in Figs. 10 and 11, respectively. 
The calculations are carried out at the experimentally 
specified values of Frj and 0,. If these values are 
explicitly given, the same will be used in the present 
calculations. On the other hand, if the specific values 
of Fr, and g, are not explicitly given, they will be 
estimated as best as possible from other given prop- 
erties. The final values used are clearly specified in 
each figure. Mostly, measurements in the transition 

I ’ ’ “,,“/ ’ ’ ““‘I 

0.1 I 10 100 

F~-‘“o;~“X 

FIG. 10. Comparison of centerline decay of Fr~“u~~‘oO with 
measurements for plane jets. 

region are selected for comparison with calculations. 
If possible, data that span at least two regions are 

chosen. Only one set of velocity comparison is shown 
in Fig. IO because of the scarcity of reliable velocity 

data. However, four sets of density data are compared 
in Fig. 11 and they span a Fr, range from 2 to 13. The 
predictions are in excellent agreement with data over 
the entire range of the plane buoyant jet. Thus, for 
the first time, analytical decay laws for the transition 
region have been derived and are found to yield accur- 
ate results. 

The comparisons with round jet data are shown in 

Figs. 12-l 5. Figures 12 and 13 show the comparisons 
with the measurements of Ogino et al. [30] and Peter- 
son and Bayazitoglu [32] in the range of Fr, from 5 
to 34. Again, the data are selected to span at least two 
regimes, always covering the transition region. On the 

other hand, the measurements of Papanicolaou and 
List [31] covered all three regions of the buoyant jet. 
Therefore, a comparison with this set of data provides 
a complete verification of the present theory’s ability 
to predict the jet centerline characteristics in all three 
regions. Since only normalized centerline volume and 
momentum fluxes are reported in ref. [31], the cal- 
culated results are converted into these quantities for 
comparison. Furthermore, the axial coordinate is nor- 
malized by I, instead of by the characteristic quantity 
suggested by Chen and Rodi [l]. Consequently, the 
comparisons shown in Figs. 14 and 15 are made with 
these variables. In general, excellent agreement is 
obtained in all these comparisons ; including the decay 
in the transition region and the asymptotic behavior 
in the first and third regions. These results further 
support the validity of the analytically derived decay 
laws for buoyant round jets. 

According to the turbulence modeling study of 
Launder et al. [ 171, the jet spread and centerline decays 
of plane and round jets can be predicted correctly 
provided a modifying function that depends on the 
decay of centerline velocity is incorporated into the 
eddy viscosity model for round jets. In other words, 
the entrainment of external fluid in a round jet would 
depend to a certain extent on the decay of centerline 
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FIG. Il. Comparison of centerline decay of Frf ‘CT ‘7” with measurements for plane jets ; (a) Fr, = 2.0; 
(b) Fr, = 5.77; (c) Fr, = 6.75; (d) Fr, = 13.08. 

velocity. The modifying function proposed by Laun- according to (28) F for plane jets only depends on 
der et al. [17] is empirical and is obtained on an ad po/pW and Fr, and is independent of the decay of UO. 
hoc basis. This study presents a forma1 derivation of In view of this, the present investigation essentially 
the separate entrainment function for plane and round verifies the postulate of Launder et al. [ 171. The val- 
buoyant jets and shows that they depend differently idity of the two entrainment functions is demonstrated 
on the behavior of the jet centerline properties in by comparisons with a wide variety of experimental 
addition to their dependence on the local Froude buoyant jet measurements. Therefore, composite 
number. It is found that the entrainment coefficient decay laws are available for calculating the decay of 
given in (20) for round jets is very much influenced centerline properties for the entire region of the plane 
by the decay of centerline velocity. On the other hand, and round buoyant jet. 

R. M. C. So and H. AKSOY 

FIG. 12. Comparison of centerline decay of Fr,a: “40, with measurements for round jets; (a) Fr, = 7.07 ; 
(b) Fr, = 33.91. 
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FIG. 14. Comparison of the decay of centerline momentum 
Aux with measurements for round jets. 
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FIG. 13. Comparison of centerline decay of Fr,~:‘~y, with 
measurements for round jets ; (a) Fr, = 5.26 ; (b) Fri = 11.96. 

FIG. 15. Comparison of the decay of centerline volume flux 
with measurements for round jets. 

Finally, it should be pointed out that the present 
analysis is not limited to a perfect gas whose equation 
of state is given by (4) only. As tong as the flow is 
incompressible and the pressure field is constant, the 
centerline temperature is given by (30) which is de- 
rived from (4), while the jet spread and other center- 
line properties are obtained by solving (31)-(33) or 
(31), (34) and (35). Since (30) is decoupled from (31)- 
(35), the solutions of (31)-(35) are independent of the 
temperature field. In other words, buoyant jets whose 
equations of state are similar to those given in (4), 
(36) and (37) can again be analysed using the present 
approach. Therefore, the present analysis is equally 
applicable to the study of buoyant jets whose 
equations of state are linear in terms of density of 
temperature. 

CONCLUSIONS 

Three distinct flow regimes exist in a buoyant jet; 
an initial variable-density, non-buoyant region, a 
transition region and a final plume region. Dimen- 
sional similarity considerations can be used to derive 
decay laws for the first and third regions only. There 
are no formal decay laws for the transition region 
because, in this region, the flow is influenced by both 

the momentum flux and the buoyancy flux. Different 
empirical entrainment functions and hence jet growth 
rates have been put forward; however, they are unsat- 
isfactory because they could not be easily generalized 
to cover a wide range of jet density ratios and densi- 
metric Froude numbers. The present study proposes 
a formal approach to derive entrainment functions 
for plane and round buoyant jets. It is based on the 
assumption of self-preservation of the turbulent mean 
flow in each of the three regions of the buoyant jet. 
Furthermore, Gaussian error distributions are used to 
describe the mean velocity and mean density and this 
allows the mean flow equations to be solved for the 
distributions of turbulent momentum and heat fluxes 
across the jet. Since these fluxes have to vanish at the 
jet centerline and at the jet edge, they can be used to 
determine the distribu~ons of eddy viscosity and eddy 
thermal conductivity. If the requirement is further 
made that the eddy viscosity thus determined has to 
reduce correctly to its incompressible limit, then an 
expression is obtained for the variations of centerline 
properties with respect to the non-dimensional axial 
coordinate. This relation can be reduced to an 
expression for the entrainment function. Therefore, 
for the first time, analytically derived entrainment 
functions are available for plane and round buoyant 
jets. These analytical expressions are not identical and 
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are functions of the local Froude number and the 
decay of centerline properties. 

In view of these results, any attempt to propose a 
single entrainment function for plane and round jets 
is not appropriate and will not be able to give correct 

predictions of the characteristics of both plane and 
round jets. Previously proposed empirical entrain- 
ment functions are deficient because they cannot com- 
pletely account for the effects of centerline decays on 

the ent~~jnment process. As a result, they cannot be 
easily generalized for jet flows with widely varying jet 

density ratios and densimetric Froude numbers. Com- 
parisons of the present calculations with measure- 

ments of plane and round buoyant jets over a wide 
range of densimetric Froude numbers lend credence 
to the analytically derived entrainment functions. The 

agreement between predictions and data is excellent 
in all plane and round buoyant jets examined. The 
present results further show that the discrepancies 

noted in the measured decay of centerline properties 
in the transition region of plane and round buoyant 

jets are not scatter due to expcrim~ntal errors. Instead, 
the discrepancies are the consequence of the depen- 

dence of centerline decays on the jet density ratio and 
the densimetric Froude number. 
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